Synthetic Studies on Antibiotic Validamycins. Part 14. ${ }^{1}$ Total Synthesis of (+)Validamycins C, D and F

Yasunobu Miyamoto and Seiichiro Ogawa*
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama, 223 Japan

Abstract

$(+)$-Validamycins C and F were first completely synthesised by use of a common blocked derivative 5 of (+)-validoxylamine A. The diols 6 and 7, obtained by acid hydrolysis of 5 , were appropriately protected to give the aglycones 17,25 and 30 , which were condensed with glycosyl donor 11 or 19 to afford the condensates 20 and 26, being convertible, by deprotection and acetylation, to the totally O -acetylated derivates 21 and 33 of validamycins C and F , respectively. In addition, (+)validamycin D was first synthesised by α-glycosylation of the protected derivative 37 of validoxylamine A .

The antibiotic validamycin complex ${ }^{2}$ shows growth inhibitory activity against Rhizoctonia solani (sheath blight diseases of rice plant). Among its eight components, validamycins $\mathrm{A}-\mathrm{H} ;{ }^{2,3}$ validamycins C (1) and $F(3)$ possess unique pseudo-tetrasaccharidic structures, and are positional isomers with the x-D-glucopyranosides, bonded to the valienamine moiety of validamycin A 4. Validamycin D contains an α-D-glucopyranose residue at $\mathrm{C}-7$ of validoxylamine $\mathrm{A} .{ }^{4}$ Thus validamycins A, C and F belong to the same category.

	R^{1}	R^{2}	R^{3}	R^{4}	
1;	H	β-Glc	α-Gic	H	(Validamycin C)
2;	α-Gic	H	H	H	(Validamycin D)
3;	H	β-Glc	H	α-Glc	(Validamycin F)
4;	H	β-Glc	H	H	(Validamycin A)

Although validamycins C and D show weak activity, validamycin F possesses strong activity almost comparable to validamycin A. Since these are minor components of the validamycin family, we thought it was very important to establish the synthetic route to these compounds, providing sufficient quantities for biochemical study. We now describe the detail of a first total synthesis of $(+)$-validamycins C, D and F.

We have already achieved the total synthesis of (+)validoxylamine $\mathrm{A},{ }^{1.5}$ therefore, it was advantageous for us to make use of validoxylamine A as a common starting compound, because it is a common constituent of validamycins C, D and F.

Validoxylamine A was easily converted into the 4,7; $4^{\prime}, 7^{\prime}$-di-O-benzylidene tetrabenzyl ether 5 in a two-step reaction. Treatment of 5 with AcOH-THF- $\mathrm{H}_{2} \mathrm{O}(4: 2: 1)$ at $60^{\circ} \mathrm{C}$ yielded 26% of the $4^{\prime}, 7^{\prime}-$ diol $6,20 \%$ of the 4,7 -diol $7,16 \%$ of the $4,7,4^{\prime}, 7^{\prime}-$ tetrol isolated as the tetraacetate (Scheme 1), and 36% of 5 recovered unchanged, when the reaction was quenched before all 5 had reacted in order to suppress the formation of the undesired tetrol.
The diol 6 was transformed into the $7^{\prime}-\mathrm{OH}$ unsubstituted

6; $R^{1}=R^{2} \Rightarrow-P h, R^{3}=R^{4}=H$
7; $R^{1}=R^{2}=H, \quad R^{3}=R^{4} \Rightarrow-P h$
8; $R^{1}=R^{2}=R^{3}=R^{4}=A c$

Scheme 1
derivative 10^{6} in three-steps in 54% overall yield. Glycosylation of the alcohol 10 with the glycosyl donor, 1,6-di- O-acetyl-2,3,4,-tri- O-benzyl-D-glucopyranose 11 in the presence of trimethylsilyl trifluoromethanesulphonate (TMSOTf) ${ }^{7}$ produced 49% of the desired α-glucoside 12 and 26% of the β-glucoside 13 , whose ${ }^{1} \mathrm{H}$ NMR spectra revealed anomeric-proton signals at $\delta 4.83(J 3.66 \mathrm{~Hz})$ and $\delta 4.35(J 7.69 \mathrm{~Hz})$, respectively, indicative of the α - and β-glucosides. The compound 12 was O-debenzylidenated in aqueous 80% acetic acid to afford the 4,7 -diol 16. The primary hydroxy group was protected by treatment with imidazole and acetyl chloride ${ }^{8}$ to give the

10; $R=H$

11

Scheme 2

7-acetate 17. Condensation of 17 with 2,3,4,6-tetra- O-acetyl- α -D-glucopyranosyl bromide 19 in the presence of silver trifluoromethanesulphonate (AgOTf) and 1,1,3,3-tetramethylurea (TMU) for 9 h at room temperature yielded, after fractionation through a column of silica gel, the protected derivative 20 of validamycin C in 76% yield. Compound 20 was deprotected with sodium in liquid ammonia and isolated as its totally O-acetylated compound 21 (Scheme 2), the ${ }^{1} \mathrm{H}$ NMR data of which was identical with those reported ${ }^{9}$ for an authentic validamycin C tetradecaacetate.
On the other hand, the primary hydroxy group of compound 7 was selectively acetylated in a similar manner to give the acetate 22. Condensation of 22 with the bromide $\mathbf{1 9}$ in the presence of AgOTf and TMU for 23 h at room temperature afforded the β-glucoside $\mathbf{2 3}$ in 55% yield. Since both hydroxy groups of 24 were located at the allylic positions, they were highly reactive for the acetylation, and we adopted the benzoyl group as the protecting group for the primary hydroxy. Similar O-debenzylidenation followed by benzoylation of the primary hydroxy group with benzoyl chloride in pyridine gave the aglycone 25 . The secondary alcohol 25 was then glycosylated to give the α-glucoside 26 in 39% yield (Scheme 3). As isolation of 26 purely from the reaction mixture was very difficult,
we employed the inverse order of glycosylation as shown in Scheme 4.

Treatment of the diol 6 with benzoyl chloride afforded 79% yield of the 7^{\prime}-benzoate 27 , of which ${ }^{1}$ H NMR spectrum showed signals due to the $\mathrm{C}-7^{\prime}$ methylene proton at $\delta 4.83$ and 4.98 ($J_{\mathrm{gem}} 12.8 \mathrm{~Hz}$). Condensation of 27 with the glycosyl donor 11 in the presence of TMSOTf gave 34% of the condensate 28 , with 36% of the aglycone 27 being recovered. In the ${ }^{1} \mathrm{H}$ NMR spectrum ($270 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) of 28 , the signals due to the anomeric proton appeared at $\delta 5.07(3.3 \mathrm{~Hz}$), indicative of the α-glucoside. O-Debenzylidenation and selective acetylation of the primary hydroxy group gave the monoacetate 31 in 63% yield. The aglycone 31 was condensed with 19 in the presence of AgOTf and TMU to produce derivative 26 of validamycin F in good yield. The physical data of this compound were identical with those of the compound derived from 25. Compound 26 was deprotected with sodium in liquid ammonia, and the product was isolated as its tetradecaacetate 33, whose ${ }^{1} \mathrm{H}$ NMR spectral data were also identical with those ${ }^{9}$ of an authentic sample.

The structure of validamycin D , which had once been assigned as the α-anomer of validamycin A , was later revised to the $7-O-\alpha$-D-glucopyranoside of validoxylamine A. The diol 34

22

26

24; $R=H$
25; $\mathrm{R}=\mathrm{Bz}$
$X=$

Scheme 3

Scheme 4
was conveniently utilized for a synthesis of validamycin D. On successive tritylation, benzylation, and detritylation, compound 34 was converted into the $7-\mathrm{OH}$ unsubstituted derivative 37 , in 60% yield, α-glycosylation of which was carried out in the similar manner to afford the protected derivative 38 of validamycin D in 49% yield. The ${ }^{1} \mathrm{H}$ NMR of 38 showed a signal due to the anomeric proton at $\delta 4.73(J 3.9 \mathrm{~Hz})$, giving a good indication of the α-glucoside. Compound 38 was deprotected with sodium in liquid ammonia and then acetylated to give validamycin D undecaacetate 39 (Scheme 5), identical with an authentic sample. ${ }^{9}$

Thus, the first total synthesis of validamycins C, D and F have been achieved.

35; $R^{1}=T r, R^{2}=H$
36; $\mathrm{R}^{1}=\mathrm{Tr}, \mathrm{R}^{2}=\mathrm{Bn}$
36; $R^{1}=H, R^{2}=B n$

$38 \mathrm{R}=\mathrm{Bn}$
$39 R=A c$
Scheme 5

Experimental

M.p.s were determined on a MEL-TEMP capillary melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were measured in deuteriochloroform solution with a Varian EM390 (90 MHz), JEOL JNM FX-270 f.t. (270 MHz) and JEOL JNM FX-400 f.t. (400 MHz) instrument and J values are given in Hz . Optical rotations were measured with a JASCO DIP-370 instrument and are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. TLC was performed using Silica gel 60 F-254 (E. Merck, Darmstadt). The silica gel used for column chromatography was Wakogel C-300 (Wako Co., Osaka, Japan) or Silica gel 60 K070 (Katayama Co., Osaka, Japan).

2,3,5',6'-Tetra-O-benzyl-4,7;4', 7^{\prime}-di-O-benzylidenevalidoxylamine \boldsymbol{A} 5.-Validoxylamine A ($10.00 \mathrm{~g}, 29.8 \mathrm{mmol}$) was suspended in N, N-dimethylformamide (DMF) $\left(100 \mathrm{~cm}^{3}\right)$, and

[^0]was added α, α-dimethoxytoluene ($13.4 \mathrm{~cm}^{3}, 89.3 \mathrm{mmol}$) and toluene- p-sulphonic acid monohydrate ($6.16 \mathrm{~g}, 35.8 \mathrm{mmol}$). The reaction mixture was stirred under reduced pressure at $60^{\circ} \mathrm{C}$ for 7 h . The solution was neutralized with sodium hydrogen carbonate, filtered, and then concentrated to dryness. The syrupy residue was dried under reduced pressure and dissolved in DMF ($100 \mathrm{~cm}^{3}$). The solution was added 60% sodium hydride ($7.16 \mathrm{~g}, 0.179 \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$ and stirred for 1 h at the same temperature. Then benzyl bromide ($21.3 \mathrm{~cm}^{3}, 0.179$ mol) was added to the solution and stirred at room temperature for 2 h . An excess of methanol was added to the reaction solution and it was evaporated. The residue was diluted with ethyl acetate ($500 \mathrm{~cm}^{3}$), washed twice with water $\left(300 \mathrm{~cm}^{3}\right)$, dried, and concentrated. The syrupy residue was purified on a silica gel column (300 g), with EtOAc-hexane ($1: 4, \mathrm{v} / \mathrm{v}$) as eluent, to give compound $5(16.65 \mathrm{~g}, 64 \%$) as a syrup (Found: C, $76.8 ; \mathrm{H}, 6.9 ; \mathrm{N}, 2.0 . \mathrm{C}_{56} \mathrm{H}_{57} \mathrm{NO}_{8}$ requires $\mathrm{C}, 77.1 ; \mathrm{H}, 6.6 ; \mathrm{N}$, 1.6%); $[\alpha]_{\mathrm{D}}^{23}+68.6$ (c 2.65 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz} ;$ CDCl_{3}) (inter alia) $0.81\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}^{*}, J 13.4, J 12.4,6 \mathrm{ax}-\mathrm{H}\right), 1.71$ ($1 \mathrm{H}, \mathrm{dt}$ * $, J 13.4, J 3.3, J 2.6,6 \mathrm{eq}-\mathrm{H}$), 2.48-2.66 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.27-3.33 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 1^{\prime}-\mathrm{H}$), 3.46 ($1 \mathrm{H}, \mathrm{t}, J 10.6,7 \mathrm{ax}-\mathrm{H}$), $3.45-$ 3.53 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 4-\mathrm{H}$), $3.55\left(1 \mathrm{H}, \mathrm{dd}, J 9.5, J 4.4,6^{\prime}-\mathrm{H}\right), 3.84$ ($1 \mathrm{H}, \mathrm{dd}, J 10.6, J 4.4,7 \mathrm{eq}-\mathrm{H}$), 3.93 ($1 \mathrm{H}, \mathrm{t}, J 9.2,3-\mathrm{H}$), 4.10 $\left(1 \mathrm{H}, \mathrm{dd}, J 9.5, J 6.2,5^{\prime}-\mathrm{H}\right), 4.43\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 6.2,4^{\prime}-\mathrm{H}\right), 4.38$ (1 H , br d, $J 13.5,7^{\prime} \mathrm{a}-\mathrm{H}$), $4.46\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 13.5,7^{\prime} \mathrm{b}-\mathrm{H}\right), 4.70$ and 4.82 (each $\left.1 \mathrm{H}, \mathrm{ABq}, J 12.8, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.77 and 4.88 (each $\left.1 \mathrm{H}, \mathrm{ABq}, J 11.0, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.89(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 5.54(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.65\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.8,2^{\prime}-\mathrm{H}\right), 5.69$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH})$ and $7.20-7.59(30 \mathrm{H}, \mathrm{m}, 6 \mathrm{Ph})$.

2,3,5',6'-Tetra-O-benzyl-4,7- 6 and 4',7'-O-benzylidenevalidoxylamine A 7, and 4,7,4', 7^{\prime}-Tetra-O-acetyl-2,3,5',6'-tetra-O-benzylvalidoxylamine A 8.-A solution of compound 5 (3.62 $\mathrm{g}, 4.15 \mathrm{mmol}$) in THF ($10 \mathrm{~cm}^{3}$) was added to aqueous 80% acetic acid $\left(25 \mathrm{~cm}^{3}\right)$ and was stirred at $60^{\circ} \mathrm{C}$ for 33.5 h . The solution was concentrated and azeotroped with ethanol and toluene to give a brown syrup, which was chromatographed on a silica gel column (180 g), with butan-2-one-toluene ($1: 3$, $\mathrm{v} / \mathrm{v}) \rightarrow$ acetone-toluene ($1: 2, \mathrm{v} / \mathrm{v}$) as eluent, to give, first, the diol $6(860 \mathrm{mg}, 26 \%$) as a syrup (Found: C, $75.0 ; \mathrm{H}, 6.8 ; \mathrm{N}, 1.85$. $\mathrm{C}_{49} \mathrm{H}_{53} \mathrm{NO}_{8}$ requires C, $75.1 ; \mathrm{H}, 6.8 ; \mathrm{N}, 1.8 \%$); $[\alpha]_{\mathrm{D}}^{24}+60.8$ (c 1.67 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) 0.90 ($\left.1 \mathrm{H}, \mathrm{br} \mathrm{t}^{*}, J 14.3, J 12.1,6 \mathrm{ax}-\mathrm{H}\right), 1.57(1 \mathrm{H}$, br d, $J 14.3,6 \mathrm{eq}-\mathrm{H}$), $1.96\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4^{\prime}-\mathrm{OH}\right), 2.36-2.53(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.95-3.22(1 \mathrm{H}$, $\left.\mathrm{m}, 7^{\prime}-\mathrm{OH}\right), 3.39-3.47\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 1^{\prime}-\mathrm{H}\right), 3.58\left(1 \mathrm{H}, \mathrm{t}^{*}, J 11.0, J\right.$ $10.6,7 \mathrm{ax}-\mathrm{H}), 3.50-3.59(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 4-\mathrm{H}), 3.98$ ($1 \mathrm{H}, \mathrm{t}, J 9.2$, $3-\mathrm{H}), 4.10(1 \mathrm{H}, \mathrm{dd}, J 11.0, J 4.4,7 \mathrm{eq}-\mathrm{H})$, 4.13-4.26 ($2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$, $\left.7^{\prime} \mathrm{b}-\mathrm{H}\right), 4.59$ and 4.65 (each $\left.1 \mathrm{H}, \mathrm{ABq}, J 12.1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.61$ and 4.66 (each $1 \mathrm{H}, \mathrm{ABq}, J 11.4, \mathrm{CH}_{2} \mathrm{Ph}$), 4.69 and 4.74 (each 1 H , $\mathrm{ABq}, J 13.2, \mathrm{CH}_{2} \mathrm{Ph}$), 4.79 and 4.90 (each $1 \mathrm{H}, \mathrm{ABq}, J 11.4$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 5.59(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.73\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$ and $7.18-$ $7.60(25 \mathrm{H}, \mathrm{m}, 5 \mathrm{Ph})$.
The second fraction gave the diol $7(641 \mathrm{mg}, 20 \%)$, isolated as needles, m.p. $137-138^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 75.0; H, $6.7 ; \mathrm{N}, 1.8 . \mathrm{C}_{49} \mathrm{H}_{53} \mathrm{NO}_{8}$ requires $\mathrm{C}, 75.1 ; \mathrm{H}, 6.8 ; \mathrm{N}, 1.8 \%$); $[\alpha]_{\mathrm{D}}^{24}+73.4\left(c 1.02\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $0.96(1 \mathrm{H}, \mathrm{br} \mathrm{t}$ *, $J 14.3, J 12.5,6 \mathrm{ax}-\mathrm{H}), 1.81(1 \mathrm{H}, \mathrm{dt}, J 14.3, J 3.7$, $6 \mathrm{eq}-\mathrm{H}), 2.25-2.40(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.47-2.58(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{OH}), 2.79$ ($1 \mathrm{H}, \mathrm{br}$ s, $4-\mathrm{OH}$), $3.30-3.54\left(6 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 4-\mathrm{H}, 7 \mathrm{ax}-\mathrm{H}, 7 \mathrm{eq}-\mathrm{H}, 1^{\prime}-\right.$ H, $\left.6^{\prime}-\mathrm{H}\right), 3.58(1 \mathrm{H}, \mathrm{dd}, J 9.5, J 4.4,2-\mathrm{H}), 3.75(1 \mathrm{H}, \mathrm{t}, J 9.2,3-\mathrm{H})$, 4.10 ($1 \mathrm{H}, \mathrm{dd}, J 9.2, J 6.2,5^{\prime}-\mathrm{H}$), 4.36-4.50 ($3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}$, $7^{\prime} \mathrm{b}-\mathrm{H}$), 4.54 and 4.63 (each $1 \mathrm{H}, \mathrm{ABq}, J 11.4, \mathrm{CH}_{2} \mathrm{Ph}$), 4.63 and 4.99 (each $1 \mathrm{H}, \mathrm{ABq}, J 11.4, \mathrm{CH}_{2} \mathrm{Ph}$), 4.69 and 4.81 (each 1 H , $\left.\mathrm{ABq}, J 11.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.66(1 \mathrm{H}$, br d, $J 4.8$, $\left.2^{\prime}-\mathrm{H}\right), 5.71(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH})$ and $7.22-7.54(25 \mathrm{H}, \mathrm{m}, 5 \mathrm{Ph})$.
The third fraction gave the tetrol ($447 \mathrm{mg}, 16 \%$), which was acetylated in the usual way, after purification on a silica gel column, to afford the tetraacetate $\mathbf{8}(532 \mathrm{mg}, 96 \%)$ as a syrup
(Found: C, 69.7; $\mathrm{H}, 6.8 ; \mathrm{N}, 1.7 . \mathrm{C}_{50} \mathrm{H}_{57} \mathrm{NO}_{12}$ requires $\mathrm{C}, 69.5$; $\mathrm{H}, 6.65 ; \mathrm{N}, 1.6 \%$; $[\alpha]_{\mathrm{D}}^{26}+46.7$ (c 0.93 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $1.23\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}^{*}, J 14.2, J 12.4,6 \mathrm{ax}-\mathrm{H}\right)$, $1.78(1 \mathrm{H}, \mathrm{dt}, J 14.2, J 3.6,6 \mathrm{eq}-\mathrm{H}), 1.96,1.97,2.03$ and 2.07 (each $\left.3 \mathrm{H}, 4 \mathrm{~s}, 4 \mathrm{COCH}_{3}\right), 2.24-2.39(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.32(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, 1-\mathrm{H}), 3.46\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1^{\prime}-\mathrm{H}\right), 3.54(1 \mathrm{H}, \mathrm{dd}, J 9.5, J 4.3,2-\mathrm{H})$, 3.76 (1 H , dd, $J 11.5, J 3.6,7 \mathrm{a}-\mathrm{H}), 3.97$ (1 H , dd, $J 11.5, J 5.3$, $7 \mathrm{~b}-\mathrm{H}), 4.43\left(1 \mathrm{H}\right.$, br d$\left., J 12.8,7^{\prime} \mathrm{a}-\mathrm{H}\right), 4.68(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.8$, $\left.7^{\prime} \mathrm{b}-\mathrm{H}\right), 4.92$ ($\left.1 \mathrm{H}, \mathrm{dd}, J 11.5, J 9.4,4-\mathrm{H}\right), 5.37\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4^{\prime}-\mathrm{H}\right)$, $5.97\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$ and $7.19-7.35(20 \mathrm{H}, \mathrm{m}, 4 \mathrm{Ph})$.

2,3,4', $5^{\prime}, 6^{\prime}$-Penta-O-benzyl-4,7-O-benzylidene-7'-O-tert-butyldimethylsilylvalidoxylamine A 9.-To a solution of the diol $6(1.05 \mathrm{~g}, 1.34 \mathrm{mmol})$ in DMF $\left(20 \mathrm{~cm}^{3}\right)$ was added tertbutylchlorodimethylsilane ($304 \mathrm{mg}, 2.02 \mathrm{mmol}$) and imidazole ($183 \mathrm{mg}, 2.69 \mathrm{mmol}$), and the mixture was stirred at room temperature for 5 h . The reaction solution was diluted with EtOAc ($150 \mathrm{~cm}^{3}$), washed with water, dried, concentrated and dried under reduced pressure. The syrupy residue was dissolved in DMF ($10 \mathrm{~cm}^{3}$) and 60% sodium hydride ($67 \mathrm{mg}, 1.68 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, and the solution was stirred for 15 min . Then benzyl bromide ($0.2 \mathrm{~cm}^{3}, 1.68 \mathrm{mmol}$) was added dropwise to it and the mixture was stirred for 2 h at the same temperature. Work-up and chromatography on a silica gel column (40 g), with EtOAc-hexane ($1: 8, \mathrm{v} / \mathrm{v}$) as eluent, gave the silyl ether 9 $(812 \mathrm{mg}, 61 \%$) as a syrup (Found: C, $75.2 ; \mathrm{H}, 7.25 ; \mathrm{N}, 1.5$. $\mathrm{C}_{62} \mathrm{H}_{73} \mathrm{NO}_{8} \mathrm{Si}$ requires $\mathrm{C}, 75.35 ; \mathrm{H}, 7.45 ; \mathrm{N}, 1.4 \%$); $[\alpha]_{\mathrm{D}}^{26}$ $+45.2\left(c 2.50\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) 0.02 and 0.03 (each $\left.3 \mathrm{H}, 2 \mathrm{~s}, 2 \mathrm{SiCH}_{3}\right), 0.83(1 \mathrm{H}$, br t, $J 13.9,6 \mathrm{ax}-\mathrm{H})$, $0.89\left(9 \mathrm{H}, \mathrm{s}, 3 \mathrm{CCH}_{3}\right), 1.67(1 \mathrm{H}, \mathrm{dt}, J 13.9, J 2.9,6 \mathrm{eq}-\mathrm{H}), 2.45-$ $2.63(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.34\left(1 \mathrm{H}\right.$, br t, $\left.J 4.0,1^{\prime}-\mathrm{H}\right), 3.41(1 \mathrm{H}$, br q*, $J 3.9, J 3.2, J 2.9,1-\mathrm{H}), 3.44-3.54(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 4-\mathrm{H}, 7 \mathrm{ax}-\mathrm{H})$, $3.60\left(1 \mathrm{H}, \mathrm{dd}, J 7.0, J 4.0,6^{\prime}-\mathrm{H}\right), 3.88-4.03(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 7 \mathrm{eq}-\mathrm{H}$, $\left.5^{\prime}-\mathrm{H}, 7^{\prime} \mathrm{a}-\mathrm{H}\right), 4.11-4.20\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 7^{\prime} \mathrm{b}-\mathrm{H}\right), 4.53-4.90(10 \mathrm{H}$, $\left.\mathrm{m}, 5 \mathrm{CH}_{2} \mathrm{Ph}\right), 5.55(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.90\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.3,2^{\prime}-\mathrm{H}\right)$ and 7.18-7.55 ($30 \mathrm{H}, \mathrm{m}, 6 \mathrm{Ph}$).

2,3,4', 5', 6'-Penta-O-benzyl-4,7-O-benzylidenevalidoxylamine A 10.-A THF ($30 \mathrm{~cm}^{3}$) solution of $9(812 \mathrm{mg}, 0.82 \mathrm{mmol})$ was added to $\mathrm{Bu}_{4} \mathrm{NF}-\mathrm{THF}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 1 \mathrm{~cm}^{3}, 1 \mathrm{mmol}\right)$ at $0{ }^{\circ} \mathrm{C}$ and it was stirred at the same temperature for 2.5 h . After addition of NaHCO_{3}, the mixture was concentrated, diluted with EtOAc $\left(100 \mathrm{~cm}^{3}\right)$, washed with water, dried and evaporated. The residue was purified on a silica gel column (30 g), with butan-2-one-toluene ($1: 7, \mathrm{v} / \mathrm{v}$) as eluent, to give the alcohol $10(635 \mathrm{mg}, 88 \%$) as a syrup (Found: C, 76.6 ; H, 6.7; $\mathrm{N}, 1.5 . \mathrm{C}_{56} \mathrm{H}_{59} \mathrm{NO}_{8}$ requires $\mathrm{C}, 76.95 ; \mathrm{H}, 6.8 ; \mathrm{N}, 1.6 \%$); $[\alpha]_{\mathrm{D}}^{26}$ +62.4 (c 1.05 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $0.85\left(1 \mathrm{H}\right.$, br t $\left.^{*}, J 13.9, J 12.5,6 \mathrm{ax}-\mathrm{H}\right), 1.58-1.80(2 \mathrm{H}, \mathrm{m}, 6 \mathrm{eq}-\mathrm{H}$, $\mathrm{OH}), 2.41-2.61(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.29-3.40\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 1^{\prime}-\mathrm{H}\right)$, $3.47-3.56(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 4-\mathrm{H}), 3.51\left(1 \mathrm{H}, \mathrm{t}^{*}, J 10.3, J 9.2,7 \mathrm{ax}-\mathrm{H}\right)$, $3.62\left(1 \mathrm{H}, \mathrm{dd}, J 6.3, J 4.0,6^{\prime}-\mathrm{H}\right), 3.92-4.10(6 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 7 \mathrm{eq}-\mathrm{H}$, $\left.4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 7^{\prime} \mathrm{a}-\mathrm{H}, 7^{\prime} \mathrm{b}-\mathrm{H}\right), 4.48-4.92\left(10 \mathrm{H}, \mathrm{m}, 5 \mathrm{CH}_{2} \mathrm{Ph}\right), 5.57$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.84\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.2,2^{\prime}-\mathrm{H}\right)$ and $7.19-7.56$ ($30 \mathrm{H}, \mathrm{m}, 6 \mathrm{Ph}$).

7'-O-(6-O-Acetyl-2,3,4-tri-O-benzyl- α - 12 and β-D-glucopyr-anosyl)-2,3,4',5',6'-penta-O-benzyl-4,7-O-benzylidenevalidoxylamine A 13.-To a solution of the alcohol $10(617 \mathrm{mg}, 0.71$ mmol) and $1,6-\mathrm{di}-O$-acetyl-2,3,4-tri- O-benzyl-D-glucopyranose $11(453 \mathrm{mg}, 0.85 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was added powdered molecular sieves $4 \AA(500 \mathrm{mg})$ and trimethylsilyl trifluoromethanesulfonate (TMSOTf) ($164 \mathrm{~mm}^{3}, 0.85 \mathrm{mmol}$), and then the mixture was stirred at room temperature for 30 \min. The mixture was neutralized with $10 \% \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CHCl}_{3}$ and

[^1]filtered. The filtrate was diluted with dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$, washed with water, dried and concentrated. The resulting syrup was chromatographed on a silica gel column (50 g), with EtOAc-hexane ($1: 3, \mathrm{v} / \mathrm{v}$) as eluent, to give, first, the β-glucoside 13 ($246 \mathrm{mg}, 26 \%$) as a syrup (Found: C, 75.4; H, 6.4; N, 1.05. $\mathrm{C}_{85} \mathrm{H}_{89} \mathrm{NO}_{14}$ requires C, $75.7 ; \mathrm{H}, 6.4 ; \mathrm{N}, 1.0 \%$); $[\alpha]_{\mathrm{D}}^{25}+30.4(c$ 0.86 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $0.79(1 \mathrm{H}$, br t $\left.{ }^{*}, J 14.2, J 12.5,6 \mathrm{ax}-\mathrm{H}\right), 1.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.38-2.58$ ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $3.22-3.31\left(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.07(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $\left.3.7,4^{\prime}-\mathrm{H}\right), 4.35\left(1 \mathrm{H}, \mathrm{d}, J 7.7,1^{\prime \prime}-\mathrm{H}\right), 5.56(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.96$ $\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.5,2^{\prime}-\mathrm{H}\right)$ and $7.13-7.60(45 \mathrm{H}, \mathrm{m}, 9 \mathrm{Ph})$.

The second fraction gave the α-glucoside $12(464 \mathrm{mg}, 49 \%)$, isolated as a syrup (Found: C, $75.6 ; \mathrm{H}, 6.6 ; \mathrm{N}, 1.1 . \mathrm{C}_{85} \mathrm{H}_{89} \mathrm{NO}_{14}$ requires $\mathrm{C}, 75.7 ; \mathrm{H}, 6.65 ; \mathrm{N}, 1.0 \%$); $[\alpha]_{\mathrm{D}}^{25}+62.2$ (c 1.48 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $0.83(1 \mathrm{H}, \mathrm{br} \mathrm{t}$, $J 13.9, J 12.1,6 \mathrm{ax}-\mathrm{H}), 1.55-1.65(1 \mathrm{H}, \mathrm{m}, 6 \mathrm{eq}-\mathrm{H}), 1.98(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{COCH}_{3}\right), 2.40-2.58(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.32-3.38\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 1^{\prime}-\mathrm{H}\right)$, 4.17 ($\left.1 \mathrm{H}, \mathrm{dd}, J 12.1, J 2.2,6^{\prime \prime} \mathrm{a}-\mathrm{H}\right), 4.25$ (1 H , dd, $J 12.1, J 4.0$, $\left.6^{\prime \prime} \mathrm{b}-\mathrm{H}\right), 4.41\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 12.5,7^{\prime} \mathrm{b}-\mathrm{H}\right), 4.83\left(1 \mathrm{H}, \mathrm{d}, J 3.7,1^{\prime \prime}-\mathrm{H}\right)$, $5.56(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.91\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 4.5,2^{\prime}-\mathrm{H}\right)$ and $7.14-7.58$ ($45 \mathrm{H}, \mathrm{m}, 9 \mathrm{Ph}$).

7'-O-(6-O-Acetyl-2,3,4-tri-O-benzyl- β-D-glucopyranosyl)-

2,3,4, $5^{\prime}, 6^{\prime}$-penta-O-benzylvalidoxylamine A 14.-To a solution of the compound $13(229 \mathrm{mg}, 0.17 \mathrm{mmol})$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ was added aqueous 80% acetic acid $\left(10 \mathrm{~cm}^{3}\right)$ and it was stirred at $50^{\circ} \mathrm{C}$ for 88 h . The solution was concentrated and azeotroped with ethanol and toluene to afford a syrup, which was purified on a silica gel column (10 g), with butan-2-one-toluene ($2: 7$, v / v) as eluent, to give the diol $14(136 \mathrm{mg}, 64 \%)$ as a syrup (Found: C, 74.1; H, 6.95; N, 1.2. $\mathrm{C}_{78} \mathrm{H}_{85} \mathrm{NO}_{14}$ requires C, 74.3; $\mathrm{H}, 6.8 ; \mathrm{N}, 1.1 \%$); $[\alpha]_{\mathrm{D}}^{25}+38.4$ (c 2.40 in CHCl_{3}); $\delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (inter alia) $0.90(1 \mathrm{H}, \mathrm{brt}, J 12.1,6 \mathrm{ax}-\mathrm{H}), 1.68$ ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.1,6 \mathrm{eq}-\mathrm{H}), 1.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.17-2.34(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 2.67-2.86(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{OH}), 2.80(1 \mathrm{H}, \mathrm{br} s, 4-\mathrm{OH}), 3.28-$ $3.35\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 1^{\prime}-\mathrm{H}\right), 3.93\left(1 \mathrm{H}, \mathrm{dd}, J 6.6, J 4.0,6^{\prime}-\mathrm{H}\right), 4.32$ ($\left.1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 11.4,7^{\prime} \mathrm{b}-\mathrm{H}\right), 4.34\left(1 \mathrm{H}, \mathrm{d}, J 7.7,1^{\prime \prime}-\mathrm{H}\right), 5.94(1 \mathrm{H}$, br d, $\left.J 4.5,2^{\prime}-\mathrm{H}\right)$ and $7.14-7.38(40 \mathrm{H}, \mathrm{m}, 8 \mathrm{Ph})$.

4,7-Di-O-acetyl-7'-O-(6-O-acetyl-2,3,4-tri-O-benzyl- β-D-glucopyranosyl)-2,3,4', $5^{\prime}, 6^{\prime}$-penta-O-benzylvalidoxylamine A 15.-The diol 14 ($120 \mathrm{mg}, 0.096 \mathrm{mmol}$) was acetylated in the usual way to give, after chromatography, the diacetate 15 (119 $\mathrm{mg}, 92 \%$) as a syrup (Found: C, 73.2; H, 6.6; N, 1.0. $\mathrm{C}_{82} \mathrm{H}_{89} \mathrm{NO}_{16}$ requires C, $73.25 ; \mathrm{H}, 6.7 ; \mathrm{N}, 1.0 \%$); $[\alpha]_{\mathrm{D}}^{26}+40.0$ (c 2.62 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) 1.18 ($1 \mathrm{H}, \mathrm{br}$ t, $J 12.4,6 \mathrm{ax}-\mathrm{H}$), 1.82 ($1 \mathrm{H}, \mathrm{br}$ d, $J 12.4,6 \mathrm{eq}-\mathrm{H}), 1.96$ and 1.98 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \mathrm{COCH}_{3}$), $2.30-2.46(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.26$ $(1 \mathrm{H}, \mathrm{br}$ s, $1-\mathrm{H}), 3.34\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1^{\prime}-\mathrm{H}\right), 4.32(1 \mathrm{H}, \mathrm{br}$ d, $J 12.3$, $\left.7^{\prime} \mathrm{b}-\mathrm{H}\right), 4.35$ ($1 \mathrm{H}, \mathrm{d}, J 8.1,1^{\prime \prime}-\mathrm{H}$), 4.91 ($1 \mathrm{H}, \mathrm{t}, J .5 .5,4-\mathrm{H}$), 5.94 $\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.0,2^{\prime}-\mathrm{H}\right)$ and $7.13-7.40(40 \mathrm{H}, \mathrm{m}, 8 \mathrm{Ph})$.

7'-O-(6-O-Acetyl-2,3,4-tri-O-benzyl-x-D-glucopyranosyl)2,3,4, $5^{\prime}, 6^{\prime}-$ penta-O-benzylvalidoxylamine A 16.-Similar Odebenzylidenation $\left(60^{\circ} \mathrm{C}, 47 \mathrm{~h}\right)$ of compound $12(434 \mathrm{mg}, 0.32$ mmol) yielded the diol $\mathbf{1 6}(222 \mathrm{mg}, 55 \%)$ as a syrup (Found: C, 74.1; $\mathrm{H}, 6.7 ; \mathrm{N}, 1.1 . \mathrm{C}_{78} \mathrm{H}_{85} \mathrm{NO}_{14}$ requires $\mathrm{C}, 74.3 ; \mathrm{H}, 6.8 ; \mathrm{N}$, $1.1 \%) ;[\alpha]_{\mathrm{D}}^{25}+65.3\left(c \quad 1.30\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; CDCl_{3}) (inter alia) $0.94(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 12.1,6 \mathrm{ax}-\mathrm{H}), 1.97(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{COCH}_{3}\right), 2.17-2.35(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.66-2.83(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{OH})$, 3.61 ($\left.1 \mathrm{H}, \mathrm{dd}, J 6.6, J 4.0,6^{\prime}-\mathrm{H}\right), 3.77(1 \mathrm{H}, \mathrm{t}, J 9.2,3-\mathrm{H}), 4.05$ ($1 \mathrm{H}, \mathrm{t}, J 9.2,3^{\prime \prime}-\mathrm{H}$), $4.17\left(1 \mathrm{H}, \mathrm{dd}, J 12.1, J 2.2,6^{\prime \prime} \mathrm{a}-\mathrm{H}\right), 4.25$ ($\left.1 \mathrm{H}, \mathrm{dd}, J 12.1, J 3.7,6^{\prime \prime} \mathrm{b}-\mathrm{H}\right), 4.41\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.1,7^{\prime} \mathrm{b}-\mathrm{H}\right)$, 4.83 ($\left.1 \mathrm{H}, \mathrm{d}, J 3.3,1^{\prime \prime}-\mathrm{H}\right), 5.91\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 4.2,2^{\prime}-\mathrm{H}\right)$ and 7.16-7.38 ($40 \mathrm{H}, \mathrm{m}, 8 \mathrm{Ph}$).

7-O-Acetyl- 17 and 4,7-Di-O-acetyl-7'-O-(6-O-acetyl-2,3,4-tri-O-benzyl- α-D-glucopyranosyl)-2,3,4', $5^{\prime}, 6^{\prime}$-penta-O-benzyl-
validoxylamine $A 18$.-To an ice-cooled solution of imidazole ($31 \mathrm{mg}, 0.45 \mathrm{mmol}$) in chloroform ($2 \mathrm{~cm}^{3}$) was added acetyl chloride ($16 \mathrm{~mm}^{3}, 0.23 \mathrm{mmol}$), and the resulting precipitates were filtered off. This solution was added to a solution of the diol 16 ($219 \mathrm{mg}, 0.17 \mathrm{mmol}$) in chloroform ($3 \mathrm{~cm}^{3}$) and then it was stirred under reflux for 141 h . The reaction solution was diluted with chloroform ($30 \mathrm{~cm}^{3}$), washed with water, dried and concentrated. The syrupy residue was purified on a silica gel column (10 g), with EtOAc-hexane ($1: 2, \mathrm{v} / \mathrm{v}$) as eluent, to give, first, the diacetate 18 ($51 \mathrm{mg}, 22 \%$) as a syrup (Found: C, 73.0 ; $\mathrm{H}, 6.7$; $\mathrm{N}, 1.2 \mathrm{C}_{82} \mathrm{H}_{89} \mathrm{NO}_{16}$ requires $\mathrm{C}, 73.25 ; \mathrm{H}, 6.7 ; \mathrm{N}, 1.0 \%$); $[\alpha]_{\mathrm{D}}^{26}+69.7$ (c 2.47 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) 1.21 (1 H, br t$\left.{ }^{*}, J 13.6, J 12.5,6 \mathrm{ax}-\mathrm{H}\right), 1.84(1 \mathrm{H}$, br d, $J 13.6,6 \mathrm{eq}-\mathrm{H}$), $1.95,1.98$ and 2.04 (each $3 \mathrm{H}, 3 \mathrm{~s}, 3 \mathrm{COCH}_{3}$), $2.31-2.46(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 3.36(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J$ $\left.4.2,1^{\prime}-\mathrm{H}\right), 3.66(1 \mathrm{H}, \mathrm{dd}, J 11.4, J 3.3,7 \mathrm{a}-\mathrm{H}), 3.84(1 \mathrm{H}, \mathrm{t}, J 9.2$, $3-\mathrm{H}), 3.97(1 \mathrm{H}, \mathrm{dd}, J 11.4, J 4.8,7 \mathrm{~b}-\mathrm{H}), 4.06\left(1 \mathrm{H}, \mathrm{t}, J 9.2,3^{\prime \prime}-\mathrm{H}\right)$, 4.18 ($\left.1 \mathrm{H}, \mathrm{dd}, J 12.1, J 2.2,6^{\prime \prime} \mathrm{a}-\mathrm{H}\right), 4.25(1 \mathrm{H}, \mathrm{dd}, J 12.1, J 4.0$, $\left.6^{\prime \prime} \mathrm{b}-\mathrm{H}\right), 4.43\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 12.1,7^{\prime} \mathrm{b}-\mathrm{H}\right), 4.83\left(1 \mathrm{H}, \mathrm{d}, J 3.9,1^{\prime \prime}-\mathrm{H}\right)$, $4.90(1 \mathrm{H}, \mathrm{t}, J 10.9,4-\mathrm{H}), 5.91\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 4.2,2^{\prime}-\mathrm{H}\right)$ and 7.16-7.37 ($40 \mathrm{H}, \mathrm{m}, 8 \mathrm{Ph}$).

The second fraction gave the monoacetate $17(133 \mathrm{mg}$, 59%), isolated as a syrup (Found: C, 73.2; H, 6.7; N, 1.2. $\mathrm{C}_{80} \mathrm{H}_{87} \mathrm{NO}_{15}{ }^{\left.-0.5 \mathrm{H}_{2} \mathrm{O} \text { requires } \mathrm{C}, 73.3 ; \mathrm{H}, 6.8 ; \mathrm{N}, 1.1 \%\right) ;[\alpha]_{\mathrm{D}}^{26}}$ +66.9 (c 2.82 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $1.13\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}^{*}, J 14.3, J 12.5,6 \mathrm{ax}-\mathrm{H}\right), 1.83(1 \mathrm{H}, \mathrm{brd}, J 14.3$, 6eq-H), 1.96 and 1.98 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \mathrm{COCH}_{3}$), 2.22-2.37 (1 H , $\mathrm{m}, 5-\mathrm{H}), 2.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.76(1 \mathrm{H}, \mathrm{t}, J 8.8,3-\mathrm{H}), 4.06(1 \mathrm{H}$, $\left.\mathrm{t}, J 9.2,3^{\prime \prime}-\mathrm{H}\right), 4.25\left(1 \mathrm{H}, \mathrm{dd}, J 12.5,4.0 \mathrm{~Hz}, 6^{\prime \prime} \mathrm{b}-\mathrm{H}\right)$, $4.42(1 \mathrm{H}$, br d, $\left.J 12.5,7^{\prime} \mathrm{b}-\mathrm{H}\right), 4.83\left(1 \mathrm{H}, \mathrm{d}, J 3.9,1^{\prime \prime}-\mathrm{H}\right), 5.90(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\left.J 4.1,2^{\prime}-\mathrm{H}\right)$ and $7.15-7.36(40 \mathrm{H}, \mathrm{m}, 8 \mathrm{Ph})$.
$7,2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}, 6^{\prime \prime \prime}-$ Hexa-O-acetyl-2,3,4', $5^{\prime}, 6^{\prime}, 2^{\prime \prime \prime}, 3^{\prime \prime \prime}, 4^{\prime \prime \prime}-$ octa-Obenzylvalidamycin C 20.-To a stirred solution of the alcohol 17 $(130 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dichloromethane ($5 \mathrm{~cm}^{3}$) was added in turn $\operatorname{AgOTf}(51 \mathrm{mg}, 0.20 \mathrm{mmol})$, TMU ($36 \mathrm{~mm}^{3}, 0.30 \mathrm{mmol}$) and 2,3,4,6-tetra- O-acetyl- α-D-glucopyranosyl bromide 19 (164 $\mathrm{mg}, 0.40 \mathrm{mmol}$), and then the mixture was stirred for 9 h in the dark at room temperature. The reaction mixture was neutralized with $10 \% \quad \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CHCl}_{3}$ and evaporated. The resulting syrup was eluted from a silica gel column (15 g), with butan-2-one-toluene ($1: 6, \mathrm{v} / \mathrm{v}$) as eluent, to give the condensate $20(123 \mathrm{mg}, 76 \%)$ as a colourless syrup (Found: C, 69.6; H, 5.9; $\mathrm{N}, 0.9 . \mathrm{C}_{94} \mathrm{H}_{105} \mathrm{NO}_{24}$ requires $\mathrm{C}, 69.1 ; \mathrm{H}, 6.5 ; \mathrm{N}, 0.9 \%$); $[\alpha]_{\mathrm{D}}^{24}$ +57.5 (c 1.15 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $1.04(1 \mathrm{H}, \mathrm{brt}, J 12.5,6 \mathrm{ax}-\mathrm{H}), 1.85(1 \mathrm{H}, \mathrm{br}$ d, $J 12.5,6 \mathrm{eq}-\mathrm{H})$, $1.94,1.955,1.970,1.978,1.981$ and 2.01 (each $3 \mathrm{H}, 6 \mathrm{~s}, 6$ COCH_{3}), 2.35-2.50 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $3.73(1 \mathrm{H}, \mathrm{dd}, J 10.6, J 2.2$, $6 " \mathrm{a}-\mathrm{H}), 4.16(1 \mathrm{H}$, br d, $J 10.6,7 \mathrm{a}-\mathrm{H}), 4.23(1 \mathrm{H}, \mathrm{dd}, J 10.6, J 3.7$, $\left.6^{\prime \prime}{ }^{\prime} \mathrm{b}-\mathrm{H}\right), 4.42\left(1 \mathrm{H}, \mathrm{dd}, J 12.5, J 3.7,6^{\prime \prime} \mathrm{b}-\mathrm{H}\right), 4.93(1 \mathrm{H}, \mathrm{t}, J 11.0$, $\left.3^{\prime \prime}-\mathrm{H}\right), 5.89\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$ and $7.12-7.34(40 \mathrm{H}, \mathrm{m}, 8 \mathrm{Ph})$.

Validamycin C Tetradecaacetate 21.-Compound 20 (121 $\mathrm{mg}, 0.074 \mathrm{mmol}$) was deprotected with sodium ($170 \mathrm{mg}, 7.40$ matom) in liquid ammonia (ca. $30 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ over 5 h . After addition of excess amount of ammonium chloride, the reaction mixture was evaporated at room temperature. TLC indicated a formation of single validamycin $\mathrm{C}\left(R_{\mathrm{f}} 0.19\right.$, propanol-acetic acid-water, $3: 1: 1, \mathrm{v} / \mathrm{v}$). The residue was acetylated in the usual way to afford the acetate $21(28 \mathrm{mg}$, 30.0%) as a syrup (Found: $\mathrm{C}, 52.1 ; \mathrm{H}, 5.9 ; \mathrm{N}, 1.3 . \mathrm{C}_{54} \mathrm{H}_{73} \mathrm{NO}_{32}$ requires $\mathrm{C}, 52.0 ; \mathrm{H}, 5.9 ; \mathrm{N}, 1.1 \%$); $[\alpha]_{\mathrm{D}}^{25}+72.2$ (c 0.97 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $1.41(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J$ $14.5,6 \mathrm{ax}-\mathrm{H}), 1.82(1 \mathrm{H}$, br d, $J 14.5,6 \mathrm{eq}-\mathrm{H}), 1.99,2.00,2.01,2.03$, 2.057, 2.063, 2.08, 2.09, 2.10 and $2.11\left(42 \mathrm{H}, 10 \mathrm{~s}, 14 \mathrm{COCH}_{3}\right)$,

[^2]$2.21-2.36(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.28(1 \mathrm{H}, \mathrm{br} \mathrm{q}$ *, $J 3.7, J 3.3, J 2.1,1-\mathrm{H})$, $3.580\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.1^{\prime}-\mathrm{H}\right), 3.583\left(1 \mathrm{H}, \mathrm{t}^{*}, J 10.2, J 9.3,4-\mathrm{H}\right), 3.57-$ $3.68\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}\right), 3.88\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.8,7^{\prime} \mathrm{a}-\mathrm{H}\right), 3.97(1 \mathrm{H}$, ddd, $\left.J 10.1, J 4.4, J 2.2,5^{\prime \prime \prime}-\mathrm{H}\right), 4.03\left(1 \mathrm{H}, \mathrm{dd}, J 12.5, J 2.2,6^{\prime \prime} \mathrm{a}-\mathrm{H}\right.$), 4.09 ($\left.1 \mathrm{H}, \mathrm{dd}, J 12.5, J 2.2,6^{\prime \prime \prime} \mathrm{a}-\mathrm{H}\right), 4.13$ ($1 \mathrm{H}, \mathrm{dd}, J 11.4, J 4.4$, $7 \mathrm{a}-\mathrm{H}), 4.18\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 12.8,7^{\prime} \mathrm{b}-\mathrm{H}\right), 4.27(1 \mathrm{H}, \mathrm{dd}, J 12.5, J 4.4$, $\left.6^{\prime \prime} \mathrm{b}-\mathrm{H}\right), 4.31(1 \mathrm{H}, \mathrm{dd}, J 11.4, J 2.6,7 \mathrm{~b}-\mathrm{H}), 4.39(1 \mathrm{H}, J 12.5, J 4.0$, $\left.6^{\prime \prime} \mathrm{b}-\mathrm{H}\right), 4.51\left(1 \mathrm{H}, \mathrm{d}, J 8.1,1^{\prime \prime}-\mathrm{H}\right), 4.84(1 \mathrm{H}, \mathrm{dd}, J 10.2, J 3.7$, $2-\mathrm{H}), 4.94$ ($1 \mathrm{H}, \mathrm{t}^{*}, J$ 9.2, $\left.J 8.1,2^{\prime \prime}-\mathrm{H}\right), 4.97$ ($1 \mathrm{H}, \mathrm{dd}, J 8.6, J 4.4$, $\left.6^{\prime}-\mathrm{H}\right), 5.049\left(1 \mathrm{H}, \mathrm{t}^{*}, J 10.1, J 9.9,4^{\prime \prime \prime}-\mathrm{H}\right), 5.055(1 \mathrm{H}, \mathrm{d}, J 3.7$, $\left.1^{\prime \prime \prime}-\mathrm{H}\right), 5.07\left(1 \mathrm{H}, \mathrm{t}, J 9.2,4^{\prime \prime}-\mathrm{H}\right), 5.15\left(1 \mathrm{H}, \mathrm{t}, J 9.2,3^{\prime \prime}-\mathrm{H}\right), 5.33$ ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 5.5,4^{\prime}-\mathrm{H}$), $5.34\left(1 \mathrm{H}, \mathrm{t}^{*}, J 10.2, J 9.3,3-\mathrm{H}\right), 5.39$ ($\left.1 \mathrm{H}, \mathrm{dd}, J 8.6, J 5.5,5^{\prime}-\mathrm{H}\right), 5.45\left(1 \mathrm{H}, \mathrm{t}^{*}, J 10.3, J 9.9,3^{\prime \prime \prime}-\mathrm{H}\right)$ and $5.99\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.4,2^{\prime}-\mathrm{H}\right)$.

Compound 21 was readily convertible into validamycin c 1 by O-deacetylation with methanolic sodium methoxide, followed by purification over a column of Dowex $50 \mathrm{~W}-\mathrm{X} 2\left(\mathrm{H}^{+}\right)$resin with water \longrightarrow aqueous ammonia as eluent.

7-O-Acetyl-2,3,5', 6^{\prime}-tetra-O-benzyl-4', 7^{\prime}-O-benzylidenevalidoxylamine A 22.-The diol $7(1.00 \mathrm{~g}, 1.28 \mathrm{mmol})$ was selectively acetylated in chloroform ($10 \mathrm{~cm}^{3}$) with the reagent prepared from imidazole ($261 \mathrm{mg}, 3.8 \mathrm{mmol}$) and acetyl chloride (136 $\mathrm{mm}^{3}, 1.9 \mathrm{mmol}$) under reflux for 90 h . The reaction mixture was processed as described in the preparation of 17 and 18. The product was chromatographed on a silica gel column (50 g), with butan-2-one-toluene ($1: 9, \mathrm{v} / \mathrm{v}$) as eluent, to give the monoacetate $22(700 \mathrm{mg}, 67 \%)$ as a syrup (Found: C, $74.1 ; \mathrm{H}$, 6.8 ; $\mathrm{N}, 1.7 . \mathrm{C}_{51} \mathrm{H}_{55} \mathrm{NO}_{9}$ requires $\mathrm{C}, 74.2 ; \mathrm{H}, 6.7 ; \mathrm{N}, 1.7 \%$); $[\alpha]_{\mathrm{D}}^{23}+80.3\left(c 1.67\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $1.15\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}^{*}, J 14.3, J 12.1,6 \mathrm{ax}-\mathrm{H}\right), 1.91(1 \mathrm{H}, \mathrm{dt}, J 14.3, J$ 3.7 , 6eq-H), 1.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}$), 2.30-2.45 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 2.58 ($1 \mathrm{H}, \mathrm{d}, J 2.6, \mathrm{OH}$), $3.28-3.37\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 4-\mathrm{H}, 1^{\prime}-\mathrm{H}\right), 3.47(1 \mathrm{H}$, dd, $J 9.2, J 3.7,2-\mathrm{H}), 3.56\left(1 \mathrm{H}, \mathrm{dd}, J 9.5, J 4.4,6^{\prime}-\mathrm{H}\right), 3.74(1 \mathrm{H}, \mathrm{t}$, $J 9.2,3-\mathrm{H}$), 3.86 ($1 \mathrm{H}, \mathrm{dd}, J 11.0, J 3.3,7 \mathrm{a}-\mathrm{H}$), 4.09 (1 H , dd, $J 9.5$, $\left.J 6.6,5^{\prime}-\mathrm{H}\right), 4.20(1 \mathrm{H}, \mathrm{dd}, J 11.0, J 4.8,7 \mathrm{~b}-\mathrm{H}), 4.38-4.49(3 \mathrm{H}$, $\mathrm{m}, 4^{\prime}-\mathrm{H}, 7^{\prime} \mathrm{a}-\mathrm{H}, 7^{\prime} \mathrm{b}-\mathrm{H}$), 4.56 and 4.64 (each $1 \mathrm{H}, \mathrm{ABq}, J 11.4$, $\mathrm{CH}_{2} \mathrm{Ph}$), 4.67 and 4.96 (each $1 \mathrm{H}, \mathrm{ABq}, J 11.4, \mathrm{CH}_{2} \mathrm{Ph}$), 4.69 and 4.79 (each $\left.1 \mathrm{H}, \mathrm{ABq}, J 12.1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $5.66\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.4,2^{\prime}-\mathrm{H}\right), 5.71(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH})$ and $7.19-7.53$ ($25 \mathrm{H}, \mathrm{m}, 5 \mathrm{Ph}$).

7,2", $3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}-P e n t a-O-a c e t y l-2,3,5^{\prime}, 6^{\prime}$-tetra-O-benzyl-4', 7^{\prime}-Obenzylidenevalidamycin A 23.-To a solution of the alcohol 22 ($513 \mathrm{mg}, 0.62 \mathrm{mmol}$) in dichloromethane ($10 \mathrm{~cm}^{3}$) was added AgOTf ($319 \mathrm{mg}, 1.24 \mathrm{mmol}$), TMU ($0.23 \mathrm{~cm}^{3}, 1.92 \mathrm{mmol}$), and the bromide 19 ($1.02 \mathrm{~g}, 2.48 \mathrm{mmol}$), and the mixture was stirred at room temperature for 23 h in the dark. The reaction solution was neutralized with $10 \% \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CHCl}_{3}$, filtered, and evaporated. The residue was chromatographed on a silica gel column (50 g), with EtOAc-toluene ($1: 3, \mathrm{v} / \mathrm{v}$) as eluent, to give the β-glucoside 23 ($397 \mathrm{mg}, 55 \%$) as a syrup (Found: C, 67.45 ; $\mathrm{H}, 6.3 ; \mathrm{N}, 1.2 . \mathrm{C}_{65} \mathrm{H}_{73} \mathrm{NO}_{18}$ requires $\mathrm{C}, 67.5 ; \mathrm{H}, 6.4 ; \mathrm{N}, 1.2 \%$); $[\alpha]_{\mathrm{D}}^{25}+69.5\left(c \quad 1.01\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathbf{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $1.08\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}^{*}, J 14.0, J 12.5,6 \mathrm{ax}-\mathrm{H}\right), 1.95,1.98,1.99$ and $2.00\left(15 \mathrm{H}, 4 \mathrm{~s}, 5 \mathrm{COCH}_{3}\right), 2.43-2.58(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.23-$ 3.38 ($3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 1^{\prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}$), 3.44 ($1 \mathrm{H}, \mathrm{dd}, J 9.2, J 4.0,4-\mathrm{H}$), $3.52\left(1 \mathrm{H}, \mathrm{t}^{*}, J 10.6, J 9.2,4-\mathrm{H}\right), 3.75(1 \mathrm{H}, \mathrm{dd}, J 12.5, J 2.2$, $7 \mathrm{a}-\mathrm{H}), 3.88$ ($1 \mathrm{H}, \mathrm{t}, J 9.2,3-\mathrm{H}), 3.98$ (1 H , dd, $J 11.4, J 5.5$, $\left.6^{\prime \prime} \mathrm{a}-\mathrm{H}\right), 4.13\left(1 \mathrm{H}, \mathrm{dd}, J 11.4, J 3.2,6^{\prime \prime} \mathrm{b}-\mathrm{H}\right), 5.62(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $\left.4.4,2^{\prime}-\mathrm{H}\right), 5.69(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH})$ and $7.12-7.51(25 \mathrm{H}, \mathrm{m}, 5 \mathrm{Ph})$.
$7,2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}-P e n t a-\mathrm{O}-a c e t y l-2,3,5^{\prime}, 6^{\prime}-$ tetra-O-benzylvalidamycin A 24.-To a solution of compound $23(383 \mathrm{mg}, 0.33$ $\mathrm{mmol})$ in THF ($1 \mathrm{~cm}^{3}$) was added aqueous 80% acetic acid ($5 \mathrm{~cm}^{3}$), and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 55 h . The mixture was concentrated and azeotroped with ethanol and toluene to give a syrup, which was chromatographed on a silica gel column (20 g), with butan-2-one-toluene ($3: 5, \mathrm{v} / \mathrm{v}$) as eluent,
to afford the diol 24 ($215 \mathrm{mg}, 61 \%$) as a syrup (Found: C, 64.9; $\mathrm{H}, 6.3 ; \mathrm{N}, 1.3 . \mathrm{C}_{58} \mathrm{H}_{69} \mathrm{NO}_{18}$ requires $\mathrm{C}, 65.2 ; \mathrm{H}, 6.5 ; \mathrm{N}, 1.3 \%$); $[\alpha]_{\mathrm{D}}^{26}+52.2$ (c 1.26 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $1.07\left(1 \mathrm{H}\right.$, br t$\left.{ }^{*}, J 14.2, J 12.5,6 \mathrm{ax}-\mathrm{H}\right), 1.82(1 \mathrm{H}$, br d, $J 14.2$, $6 e q-H), 1.94,1.96,1.98$ and $2.06\left(15 \mathrm{H}, 4 \mathrm{~s}, 5 \mathrm{COCH}_{3}\right)$, 2.28-2.43 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $3.48(1 \mathrm{H}, \mathrm{dd}, J .9 .2, J 3.6,2-\mathrm{H}), 3.56(1 \mathrm{H}, \mathrm{dd}$, $J 10.9, J 9.2,4-\mathrm{H}), 3.75(1 \mathrm{H}, \mathrm{dd}, J 12.8, J 2.7,7 \mathrm{a}-\mathrm{H}), 3.90(1 \mathrm{H}, \mathrm{t}$, $J 9.2,3-\mathrm{H}), 4.25\left(1 \mathrm{H}, \mathrm{dd}, J 11.2, J 3.6,6^{\prime \prime} \mathrm{a}-\mathrm{H}\right), 4.83(1 \mathrm{H}, \mathrm{d}, J 7.9$, $1^{\prime \prime}-\mathrm{H}$), 5.01 ($\left.1 \mathrm{H}, \mathrm{dd}, J 9.7, J 7.9,2^{\prime \prime}-\mathrm{H}\right), 5.09$ ($1 \mathrm{H}, \mathrm{t}, J 9.7,4^{\prime \prime}-\mathrm{H}$), $5.13\left(1 \mathrm{H}, \mathrm{t}, J 9.7,3^{\prime \prime}-\mathrm{H}\right), 5.71\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.2^{\prime}-\mathrm{H}\right)$ and $7.11-7.36$ ($20 \mathrm{H}, \mathrm{m}, 4 \mathrm{Ph}$).
$7,2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}-$ Penta-O-acetyl-7'-O-benzoyl-2,3,5', 6^{\prime}-tetra-Obenzylvalidamycin A 25.-The diol $24(212 \mathrm{mg}, 0.20 \mathrm{mmol})$ was dissolved in pyridine ($2 \mathrm{~cm}^{3}$), to which benzoyl chloride (26 $\mathrm{mm}^{3}, 0.22 \mathrm{mmol}$) was added, the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h and then at room temperature for 7.5 h . After addition of excess methanol, the solution was concentrated and azeotroped with toluene. The resulting syrup was diluted with EtOAc (50 cm^{3}), washed with water, dried and concentrated. The syrupy residue was purified on a silica gel column (10 g), with butan-2-one-toluene ($1: 9, \mathrm{v} / \mathrm{v}$) as eluent, to give the benzoate $25(153 \mathrm{mg}$, 66%) as a syrup (Found: $\mathrm{C}, 66.6 ; \mathrm{H}, 6.3 ; \mathrm{N}, 1.2 . \mathrm{C}_{65} \mathrm{H}_{73} \mathrm{NO}_{19}$ requires $\mathrm{C}, 66.6$; $\mathrm{H}, 6.3$; $\mathrm{N}, 1.2 \%$); $[\alpha]_{\mathrm{D}}^{24}+37.6$ (c 1.26 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.06\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}^{*}, J 14.2, J 12.5\right.$, $6 \mathrm{ax}-\mathrm{H}$), 1.83 ($1 \mathrm{H}, \mathrm{br}$ d, $J 14.2,6 \mathrm{eq}-\mathrm{H}), 1.93,1.96,1.97,1.99$ and 2.06 (each $3 \mathrm{H}, 5 \mathrm{~s}, 5 \mathrm{COCH}_{3}$), 2.23-2.42 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.54 ($1 \mathrm{H}, \mathrm{dd}, J 10.3, J 8.8,4-\mathrm{H}$), 3.73 ($1 \mathrm{H}, \mathrm{dd}, J 12.5, J 2.2,7 \mathrm{a}-\mathrm{H}$), $3.80\left(1 \mathrm{H}, \mathrm{br} t, J 4.4,1^{\prime}-\mathrm{H}\right), 3.88(1 \mathrm{H}, \mathrm{t}, J 8.8,3-\mathrm{H}), 4.24(1 \mathrm{H}$, dd, $\left.J 11.0, J 3.3,6^{\prime \prime} \mathrm{b}-\mathrm{H}\right), 4.82\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 12.5,7{ }^{\prime} \mathrm{a}-\mathrm{H}\right), 4.83$ ($1 \mathrm{H}, \mathrm{d}, J 7.6,1^{\prime \prime}-\mathrm{H}$), 4.97 ($1^{\mathrm{H}, \mathrm{br} \mathrm{d}, ~ J} 12.5,7^{\prime} \mathrm{b}-\mathrm{H}$), $5.83(1 \mathrm{H}$, br s, $\left.2^{\prime}-\mathrm{H}\right)$ and 7.10-8.11 ($25 \mathrm{H}, \mathrm{m}, 5 \mathrm{Ph}$).
$7,2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}, 6^{\prime \prime \prime}-$ Hexa-O-acetyl-7'-O-benzoyl-2,3,5', $6^{\prime}, 2^{\prime \prime \prime}, 3^{\prime \prime \prime},-$ $4^{\prime \prime \prime}$-hepta-O-benzylvalidamycin F 26.- α-Glucosylation of the alcohol $25(147 \mathrm{mg}, 0.13 \mathrm{mmol})$ with the glucosyl donor $11(101$ $\mathrm{mg}, 0.19 \mathrm{mmol}$) was carried out in the similar manner, as described in the preparation of 12 from 10, to produce, after chromatography, the protected derivative $26(80 \mathrm{mg}, 39 \%)$ of validamycin F as a syrup, and unchanged 25 ($59 \mathrm{mg}, 40 \%$) (Found: C, 68.3; H, 6.25; N, 0.9. $\mathrm{C}_{94} \mathrm{H}_{103} \mathrm{NO}_{25}$ requires C, 68.6; $\mathrm{H}, 6.3 ; \mathrm{N}, 0.85 \%) ;[\alpha]_{\mathrm{D}}^{21}+44.6\left(c 1.34\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (inter alia) $1.00\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}^{*}, J 13.2, J 12.8,6 \mathrm{ax}-\mathrm{H}\right)$, $1.76(1 \mathrm{H}$, br d, $J 13.2,6 \mathrm{eq}-\mathrm{H}), 1.93,1.96,1.97,1.98$ and 2.03 $\left(18 \mathrm{H}, 5 \mathrm{~s}, 6 \mathrm{COCH}_{3}\right), 2.23-2.38(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.4^{\prime}-\mathrm{H}\right), 4.03\left(1 \mathrm{H}, \mathrm{dd}, J 12.6, J 3.7,6^{\prime \prime} \mathrm{a}-\mathrm{H}\right)$, 6.01 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{H}$) and 7.07-8.05 ($40 \mathrm{H}, \mathrm{m}, 8 \mathrm{Ph}$).

7'-O-Benzoyl-2,3,5',6'-tetra-O-benzyl-4,7-O-benzylidenevalidoxylamine A 27.-The diol $7(1.11 \mathrm{~g}, 1.42 \mathrm{mmol})$ in pyridine ($20 \mathrm{~cm}^{3}$) was added benzoyl chloride ($0.18 \mathrm{~cm}^{3}, 1.55 \mathrm{mmol}$) and the solution was stirred at $0^{\circ} \mathrm{C}$ for 4 h and at room temperature for 1.5 h . Work-up and chromatography afforded the benzoate 27 ($991 \mathrm{mg}, 79 \%$) as a syrup (Found: C, 75.7; H, 6.3; N, 1.5. $\mathrm{C}_{56} \mathrm{H}_{57} \mathrm{NO}_{9}$ requires $\mathrm{C}, 75.8 ; \mathrm{H}, 6.5 ; \mathrm{N}, 1.6 \%$); $[\alpha]_{\mathrm{D}}^{22}+35.7$ (c 4.51 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $0.90(1 \mathrm{H}$, br t*, $J 14.3, J 12.5,6 \mathrm{ax}-\mathrm{H}), 1.58(1 \mathrm{H}, \mathrm{br}$ d, $J 14.3,6 \mathrm{eq}-\mathrm{H}), 2.33-$ $2.72(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, \mathrm{OH}), 3.54\left(1 \mathrm{H}, \mathrm{t}^{*}, J 11.0, J 9.2,4-\mathrm{H}\right), 3.58$ ($1 \mathrm{H}, \mathrm{t}, J 11.4,7 \mathrm{ax}-\mathrm{H})$, $3.82\left(1 \mathrm{H}, \mathrm{brt}, J 4.0,1^{\prime}-\mathrm{H}\right), 4.10(1 \mathrm{H}, \mathrm{dd}$, $J 11.4, J 4.4,7 \mathrm{eq}-\mathrm{H}), 4.83(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.8,7 \mathrm{a}-\mathrm{H}), 4.98(1 \mathrm{H}$, br d, J 12.8, $\left.7^{\prime} \mathrm{b}-\mathrm{H}\right), 5.59(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.87\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$ and 7.16-8.06 $(30 \mathrm{H}, \mathrm{m}, 6 \mathrm{Ph})$.

4'-O-(6-O-Acetyl-2,3,4-tri-O-benzyl- α-D-glucopyranosyl)-7'-O-benzoyl-2,3,5', 6^{\prime}-tetra-O-benzyl-4,7-O-benzylidenevalidoxylamine A 28.-The aglycone 27 ($749 \mathrm{mg}, 0.84 \mathrm{mmol}$) was

* See footnote on p. 2124.
condensed with the glucosyl donor 11 ($541 \mathrm{mg}, 1.01 \mathrm{mmol}$) in a similar way, as described in the preparation of 12 from 10 , to yield, after chromatography on a silica gel column, the glucoside $28(387 \mathrm{mg}, 34 \%)$ as a syrup, and unchanged 27 ($267 \mathrm{mg}, 36 \%$) (Found: C, 74.6; H, 6.3; N, 1.0. $\mathrm{C}_{85} \mathrm{H}_{\mathbf{8 7}} \mathrm{NO}_{\mathbf{1 5}}$ requires C, 74.9; $\mathrm{H}, 6.4 ; \mathrm{N}, 1.0 \%$); $[\alpha]_{\mathrm{D}}^{22}+45.8$ (c 1.66 in CHCl_{3}); $\delta_{\mathrm{H}} 0.84(1 \mathrm{H}$, br t*, J 13.9, J 12.5, 6ax-H), 1.53 ($1 \mathrm{H}, \mathrm{br}$ d, $J 13.9,6 \mathrm{eq}-\mathrm{H}$), 1.97 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.32-2.48(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.72(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 3.7$, $\left.1^{\prime}-\mathrm{H}\right), 4.86$ (1 H, br d, J 12.8, $7^{\prime} \mathrm{a}-\mathrm{H}$), 5.07 ($1 \mathrm{H}, \mathrm{d}, J 3.3,1^{\prime \prime}-\mathrm{H}$), $5.10\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.8,7^{\prime} \mathrm{b}-\mathrm{H}\right)$, $5.56(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 6.05(1 \mathrm{H}$, br s, $\left.2^{\prime}-\mathrm{H}\right)$ and $7.06-8.05(45 \mathrm{H}, \mathrm{m}, 9 \mathrm{Ph})$.

4'-O-(6-O-Acetyl-2,3,4-tri-O-benzyl- α-D-glucopyranosyl)-7'-O-benzoyl-2,3,5', $\mathbf{6}^{\prime}$-tetra-O-benzylvalidoxylamine A 29.Compound 28 ($376 \mathrm{mg}, 0.28 \mathrm{mmol}$) was debenzylidenated in the similar manner to give, after chromatography, the diol 29 $(214 \mathrm{mg}, 61 \%)$ as a syrup (Found: C, 73.4; H, 6.7; N, 1.1. $\mathrm{C}_{78} \mathrm{H}_{83} \mathrm{NO}_{15}$ requires C, 73.5; $\mathrm{H}, 6.6 ; \mathrm{N}, 1.1 \%$); $[\alpha]_{\mathrm{D}}^{21}+48.8$ (c 0.85 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) (inter alia) 0.91 (1 H, br t$\left.{ }^{*}, 13.9, J 12.5,6 \mathrm{ax}-\mathrm{H}\right), 1.62(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 13.9,6 \mathrm{eq}-\mathrm{H}$), $1.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.10-2.28(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, 4-OH), 2.83-2.90 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{OH}$), $3.35\left(1 \mathrm{H}\right.$, br t${ }^{*}, J 10.3, J 9.5$, 4-H), 3.74 ($1 \mathrm{H}, \mathrm{br}$ t, J $4.0,1^{\prime}-\mathrm{H}$), 3.77 ($1 \mathrm{H}, \mathrm{t}, J 9.5,3-\mathrm{H}$), 3.95 ($1 \mathrm{H}, \mathrm{t}, J 9.2,3^{\prime \prime}-\mathrm{H}$), $4.86\left(1 \mathrm{H}\right.$, br d, $\left.J 12.8,7^{\prime} \mathrm{a}-\mathrm{H}\right), 5.02(1 \mathrm{H}$, br d, $\left.J 12.8,7^{\prime} \mathrm{b}-\mathrm{H}\right), 5.05\left(1 \mathrm{H}, \mathrm{d}, J 3.3,1^{\prime \prime}-\mathrm{H}\right), 6.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.2^{\prime}-\mathrm{H}\right)$ and 7.10-8.05 ($40 \mathrm{H}, \mathrm{m}, 8 \mathrm{Ph}$).

7-O- 30, 4-O- 31, and 4,7-Di-O-acetyl-4'-O-(6-O-acetyl-2,3,4-tri-O-benzyl- α-D-glucopyranosyl)-7'-O-benzoyl-2,3,5',6'-tetra-O-benzylvalidoxylamine A 32.-The diol 29 ($280 \mathrm{mg}, 0.22$ mmol) was selectively acetylated in chloroform ($6 \mathrm{~cm}^{3}$) with the reagent prepared from imidazole ($\mathbf{4 5} \mathrm{mg}, 0.7 \mathrm{mmol}$) and acetyl chloride ($23 \mathrm{~mm}^{3}, 0.3 \mathrm{mmol}$) for 60 h under reflux, and the mixture was processed as described for the preparation of 17 and 18. The product was chromatographed on a silica gel column (10 g), with butan-2-one-toluene ($1: 10 \sim 1: 3, \mathrm{v} / \mathrm{v}$) as eluent to give, first, the diacetate $32(45 \mathrm{mg}, 15 \%)$ as a syrup (Found: $\mathrm{C}, 72.4 ; \mathrm{H}, 6.1 ; \mathrm{N}, 1.2 . \mathrm{C}_{82} \mathrm{H}_{87} \mathrm{NO}_{17}$ requires $\mathrm{C}, 72.5 ; \mathrm{H}$, $6.45 ; \mathrm{N}, 1.0 \%$); $[\alpha]_{\mathrm{D}}^{2 \mathrm{~S}}+44.2$ (c 2.26 in CHCl_{3}); $\delta_{\mathrm{H}}(270$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (inter alia) $1.19(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 14.3,6 \mathrm{ax}-\mathrm{H}), 1.74$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 14.3,6 \mathrm{eq}-\mathrm{H}$), 1.92, 1.94 and 1.97 (each $3 \mathrm{H}, 3 \mathrm{~s}, 3$ COCH_{3}), 2.18-2.33 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $3.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{1-H)} 3.69$, ($1 \mathrm{H}, \mathrm{brt}, J 4.0,1^{\prime}-\mathrm{H}$), 3.72 ($1 \mathrm{H}, \mathrm{dd}, J 11.7, J$ 2.9, $\mathbf{6}^{\prime \prime} \mathrm{a}-\mathrm{H}, 3.86$ ($1 \mathrm{H}, \mathrm{t}, J 9.5,3-\mathrm{H}$), $3.98\left(1 \mathrm{H}, \mathrm{t}, J 9.2,3^{\prime \prime}-\mathrm{H}\right), 4.83(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $12.8,7^{\prime} \mathrm{a}-\mathrm{H}$), 5.02 (1 H, br d, $J 12.8,7^{\prime} \mathrm{b}-\mathrm{H}$), 5.07 ($1 \mathrm{H}, \mathrm{d}, J 3.3$, $\left.1^{\prime \prime}-\mathrm{H}\right), 6.03\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$ and $7.10-8.08(40 \mathrm{H}, \mathrm{m}, 8 \mathrm{Ph})$.
The second fraction gave the monoacetate $30(181 \mathrm{mg}, 63 \%)$, isolated as a syrup (Found: C, 72.95; H, 6.4; N, 1.1. $\mathrm{C}_{80} \mathrm{H}_{85} \mathrm{NO}_{16}$ requires C, 73.0; $\mathrm{H}, 6.5 ; \mathrm{N}, 1.1 \%$); $[\alpha]_{\mathrm{D}}^{18}+50.9$ (c 1.12 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (inter alia) 1.10 ($\left.1 \mathrm{H}, \mathrm{br} \mathrm{t}^{*}, J 14.3, J 12.5,6 \mathrm{ax}-\mathrm{H}\right), 1.74(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 14.3,6 \mathrm{eq}-\mathrm{H}$), 1.93 and 1.97 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \mathrm{COCH}_{3}$), $2.08-2.23(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 2.45(1 \mathrm{H}, \mathrm{d}, J 4.2, \mathrm{OH}), 3.29\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}{ }^{*}, J 9.2, J 8.8,4-\mathrm{H}\right)$, $3.71\left(1 \mathrm{H}, \mathrm{br}\right.$ t, $\left.J 4.0,1^{\prime}-\mathrm{H}\right), 3.77\left(1 \mathrm{H}, \mathrm{t}^{*}, J 9.2, J 8.8,3-\mathrm{H}\right), 3.96$ ($\left.1 \mathrm{H}, \mathrm{t}, J{ }^{2} .5,3^{\prime \prime}-\mathrm{H}\right), 4.02\left(1 \mathrm{H}, \mathrm{dd}, J 11.7, J 3.7,6^{\prime \prime} \mathrm{a}-\mathrm{H}\right), 4.87$ ($1 \mathrm{H}, \mathrm{br}$ d, $J 12.5,7^{\prime} \mathrm{a}-\mathrm{H}$), $5.02\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.5,7^{\prime} \mathrm{b}-\mathrm{H}\right), 5.07$ ($\left.1 \mathrm{H}, \mathrm{d}, J 5.1,1^{\prime \prime}-\mathrm{H}\right)$, $6.04\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$ and 7.10-8.09 (40 H , $\mathrm{m}, 8 \mathrm{Ph}$).

The third fraction gave the monoacetate 31 ($19 \mathrm{mg}, 7 \%$), isolated as a syrup (Found: C, 72.4; H, 6.4; $\mathbf{N}, 1.1$. $\mathrm{C}_{80} \mathrm{H}_{85} \mathrm{NO}_{16} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 72.5 ; \mathrm{H}, 6.5 ; \mathrm{N}, 1.1 \%$); $[\alpha]_{\mathrm{D}}{ }^{26}$ +51.2 (c 0.96 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) 1.44 (1 H , br t*, $J 14.7, J 12.5,6 \mathrm{ax}-\mathrm{H}$), $1.63(1 \mathrm{H}$, br d, $J 14.7$, $6 \mathrm{eq}-\mathrm{H}$), 1.97 and 2.01 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \mathrm{COCH}_{3}$), 2.43-2.52 (1 H , $\mathrm{m}, \mathrm{OH}), 3.16-3.28$ ($1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H})$, 3.67 (1 H, br t, J $4.0,1^{\prime}-\mathrm{H}$), $3.94(1 \mathrm{H}, \mathrm{t}, J 9.2,3-\mathrm{H}), 3.98\left(1 \mathrm{H}, \mathrm{t}, J .8 .8,3^{\prime \prime}-\mathrm{H}\right), 4.87(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\left.J 12.5,7^{\prime} \mathrm{a}-\mathrm{H}\right), 5.01\left(1 \mathrm{H}\right.$, br d, $\left.J 12.5,7^{\prime} \mathrm{b}-\mathrm{H}\right), 5.08(1 \mathrm{H}, \mathrm{d}, J 3.7$, $\left.1^{\prime \prime}-\mathrm{H}\right)$, , $6.05\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$ and $7.10-8.06(40 \mathrm{H}, \mathrm{m}, 8 \mathrm{Ph})$.
$7,2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}, 6^{\prime \prime \prime}-$ Hexa-O-acetyl-7'-O-benzoyl-2,3,5', $6^{\prime}, 2^{\prime \prime \prime}$,$3^{\prime \prime \prime}, 4^{\prime \prime \prime}$-hepta-O-benzylvalidamycin F 26.-Condensation of the aglycone $30(181 \mathrm{mg}, 0.14 \mathrm{mmol})$ with the bromide $19(226 \mathrm{mg}$, 0.55 mmol) was carried out in a similar manner, as described in the preparation of 20, to produce validamycin F derivative $\mathbf{2 6}$ ($159 \mathrm{mg}, 61 \%$), whose physical data were identical to those of the product 26 prepared from 25.

Validamycin F Tetradecaacetate 33.-Compound 26 (210 $\mathrm{mg}, 0.13 \mathrm{mmol}$) was deprotected in the usual way to give validamycin F (TLC, $R_{\mathrm{f}} 0.19$, propanol-acetic acid-water, $3: 1: 1, \mathrm{v} / \mathrm{v}$), which was isolated as its totally O -acetylated derivative 33 ($43 \mathrm{mg}, 27 \%$) as a syrup (Found: C, $52.1 ; \mathrm{H}, 6.1 ; \mathrm{N}$, 1.1. $\mathrm{C}_{54} \mathrm{H}_{73} \mathrm{NO}_{32}$ requires $\mathrm{C}, 52.0 ; 5.9 ; \mathrm{N}, 1.1 \%$); $[\alpha]_{\mathrm{D}}^{25}+61.0$ (c 2.02 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $1.40(1 \mathrm{H}$, br t*, $J 14.0, J 12.5,6 \mathrm{ax}-\mathrm{H}), 1.73$ (1 H , br d, $J 12.5,6 \mathrm{eq}-\mathrm{H}$), 1.99 , $2.00,2.01,2.016,2.022,2.05,2.06,2.09,2.11,2.12$ and $2.17(42 \mathrm{H}$, $\left.11 \mathrm{~s}, 14 \mathrm{COCH}_{3}\right), 2.31-2.45(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.36(1 \mathrm{H}, \mathrm{br} \mathrm{q}, 1-\mathrm{H})$, 3.47-3.53 ($\left.1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 3.55-3.68\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 3.93$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4^{\prime}-\mathrm{H}$), $4.04\left(1 \mathrm{H}\right.$, br d, $\left.J 12.5,6^{\prime \prime} \mathrm{a}-\mathrm{H}\right), 4.05-4.15(2 \mathrm{H}$, $\left.\mathrm{m}, 7 \mathrm{a}-\mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}\right), 4.12\left(1 \mathrm{H}, \mathrm{brd}, J 12.8,6^{\prime \prime \prime} \mathrm{a}-\mathrm{H}\right), 4.24(1 \mathrm{H}, \mathrm{dd}, J$ $\left.12.8, J 4.4,6^{\prime \prime \prime} \mathrm{b}-\mathrm{H}\right), 4.34(1 \mathrm{H}, \mathrm{dd}, J 11.0, J 2.9,7 \mathrm{~b}-\mathrm{H}), 4.40(1 \mathrm{H}$, dd, $\left.J 12.5, J 4.0,6^{\prime \prime} \mathrm{b}-\mathrm{H}\right), 4.53\left(1 \mathrm{H}, \mathrm{d}, J 7.7,1^{\prime \prime}-\mathrm{H}\right), 4.60(2 \mathrm{H}$, br s, 7 'a-H, $\left.7^{\prime} \mathrm{b}-\mathrm{H}\right), 4.90$ (1 H, dd, $J 11.0, J 4.0,2-\mathrm{H}$), $4.94\left(1 \mathrm{H}, \mathrm{t}^{*}, J\right.$ 9.2, $J 7.7,2^{\prime \prime}-\mathrm{H}$), $5.00\left(1 \mathrm{H}, \mathrm{t}^{*}, J 5.0, J 3.7,6^{\prime}-\mathrm{H}\right), 5.03(1 \mathrm{H}, \mathrm{dd}, J$ 10.6, J 3.7, 2"'-H), $5.09\left(1 \mathrm{H}, \mathrm{t}, J 9.2,4^{\prime \prime \prime}-\mathrm{H}\right), 5.14$ ($1 \mathrm{H}, \mathrm{dd}, J 5.0, J$ $\left.2.6,5^{\prime}-\mathrm{H}\right), 5.15$ ($\left.1 \mathrm{H}, \mathrm{t}^{*}, J 9.6, J 9.2,3^{\prime \prime}-\mathrm{H}\right), 5.28(1 \mathrm{H}, \mathrm{d}, J 3.7$, $1^{\prime \prime \prime}-\mathrm{H}$), $5.37\left(1 \mathrm{H}, \mathrm{dd}, J 10.6, J 9.2,3^{\prime \prime \prime}-\mathrm{H}\right), 5.40\left(1 \mathrm{H}, \mathrm{t}^{*}, J 11.0, J\right.$ $9.2,3-\mathrm{H})$ and $5.88\left(1 \mathrm{H}\right.$, br s, $\left.2^{\prime}-\mathrm{H}\right)$.
Compound 33 was convertible into validamycin F 3 as described in the preparation of 1 .

2,3,4', $5^{\prime}, 6^{\prime}, 7^{\prime}$-Hexa-O-benzyl-7-O-triphenylmethylvalidoxylamine A 35.-To a solution of the diol 34 ($307 \mathrm{mg}, 0.35 \mathrm{mmol}$) in pyridine $\left(10 \mathrm{~cm}^{3}\right)$ was added chlorotriphenylmethane (147 $\mathrm{mg}, 0.53 \mathrm{mmol}$) and it was stirred at $50^{\circ} \mathrm{C}$ for 21.5 h . After evaporation and azeotroping with toluene, the residue was diluted with EtOAc ($100 \mathrm{~cm}^{3}$), washed with water, dried and concentrated. The residue was chromatographed on a silica gel column (15 g), with EtOAC-hexane ($1: 8, \mathrm{v} / \mathrm{v}$) as eluent, to give the trityl ether 35 ($354 \mathrm{mg}, 90 \%$) as a syrup (Found: C, 80.2; H, $6.9 ; \mathrm{N}, 1.3 . \mathrm{C}_{75} \mathrm{H}_{75} \mathrm{NO}_{8}$ requires $\mathrm{C}, 80.5 ; \mathrm{H}, 6.8 ; \mathrm{N}, 1.25 \%$); $[\alpha]_{\mathrm{D}}^{20}+38.1$ (c 2.11 in CHCl_{3}); $\delta_{\mathrm{H}}(90 \mathrm{MHz} ; \mathrm{CDCl})$ (inter alia) $2.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.10\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$ and $7.25-8.00$ ($45 \mathrm{H}, \mathrm{m}, 9 \mathrm{Ph}$).

2,3,4,4', $5^{\prime}, 6^{\prime}, 7^{\prime}$-Hepta-O-benzyl-7-O-triphenylmethylvalidoxylamine A 36.-To a solution of the alcohol 35 (509 mg , 0.455 mmol) in DMF ($7 \mathrm{~cm}^{3}$) was added $60 \% \mathrm{NaH}(36 \mathrm{mg}, 0.91$ mmol), and it was stirred for 50 min at $0^{\circ} \mathrm{C}$. Benzyl bromide $\left(0.11 \mathrm{~cm}^{3}, 0.93 \mathrm{mmol}\right)$ was then added to the suspension, which was stirred for 33 h at room temperature. Work-up and chromatography on a silica gel column (15 g), with EtOAchexane ($1: 8, \mathrm{v} / \mathrm{v}$) as eluent, afforded compound $\mathbf{3 6}(441 \mathrm{mg}, 80 \%$) as a syrup (Found: $\mathrm{C}, 80.8 ; \mathrm{H}, 6.8 ; \mathrm{N}, 1.3 . \mathrm{C}_{82} \mathrm{H}_{81} \mathrm{NO}_{8} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 80.9 ; \mathrm{H}, 6.8 ; \mathrm{N}, 1.15 \%$); $[\alpha]_{\mathrm{D}}^{22}+47.7$ (c 1.12 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $3.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $1-\mathrm{H}), 6.05\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$ and $7.05-7.70(50 \mathrm{H}, \mathrm{m}, 10 \mathrm{Ph})$.

2,3,4,4 $\mathbf{4}^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}$ Hepta-O-benzylvalidoxylamine A 37.-The trityl ether 36 ($441 \mathrm{mg}, 0.44 \mathrm{mmol}$) was treated with aqueous 80% acetic acid $\left(15 \mathrm{~cm}^{3}\right)$ at $50^{\circ} \mathrm{C}$ for 15 h . The usual work-up and chromatography gave the alcohol $37(291 \mathrm{mg}, 83 \%)$ as a syrup (Found: C, $78.0 ; \mathrm{H}, 7.15 ; \mathrm{N}, 1.4 . \mathrm{C}_{63} \mathrm{H}_{67} \mathrm{NO}_{8}$ requires C , $78.3 ; \mathrm{H}, 7.0 ; \mathrm{N}, 1.45 \%$); $[\alpha]_{\mathrm{D}}^{22}+61.1$ (c 1.34 in CHCl_{3}); $\delta_{\mathrm{H}}(90$
$\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $1.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.12(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.2^{\prime}-\mathrm{H}\right)$ and $7.00-7.95(35 \mathrm{H}, \mathrm{m}, 7 \mathrm{Ph})$.
$6^{\prime \prime}-\mathrm{O}-$ Acetyl-2,3,4,4', $5^{\prime}, 6^{\prime}, 7^{\prime}, 2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}$-deca-O-benzylvalidamycin D 38.- α-Condensation of the aglycone 37 ($203 \mathrm{mg}, 0.21$ $\mathrm{mmol})$ with the sugar $11(135 \mathrm{mg}, 0.25 \mathrm{mmol})$ was conducted in the similar way, as described in the preparation of 12 from 10 , to afford the protected derivative 38 of validamycin $\mathrm{D}(149 \mathrm{mg}$, 49%) as a syrup (Found: C, 76.7; H, 6.8; N, 0.9. $\mathrm{C}_{92} \mathrm{H}_{97} \mathrm{NO}_{14}$ requires $\mathrm{C}, 76.7 ; \mathrm{H}, 6.8 ; \mathrm{N}, 1.0 \%$); $[\alpha]_{\mathrm{D}}^{26}+76.9$ (c 0.88 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) $1.42(1 \mathrm{H}, \mathrm{br} \mathrm{t}$, $J 14.2, J 12.2,6 \mathrm{ax}-\mathrm{H}$), 1.78 (1 H, br d, $J 14.2,6 \mathrm{eq}-\mathrm{H}$), 1.91 (3 H , $\left.\mathrm{s}, \mathrm{COCH}_{3}\right), 2.30-2.40(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.04(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7.8,7 \mathrm{a}-\mathrm{H})$, $3.31(1 \mathrm{H}, \mathrm{brq}, 1-\mathrm{H}), 3.40\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, 1^{\prime}-\mathrm{H}\right), 3.42(1 \mathrm{H}, \mathrm{t}, J 9.8$, $4-\mathrm{H}$), 3.62 (1 H , dd, $J 7.3, J 4.4,6^{\prime}-\mathrm{H}$), 3.69 (1 H , ddd, $J 10.3, J$ 3.9, J 2.4, $\left.5^{\prime \prime}-\mathrm{H}\right), 3.98$ ($1 \mathrm{H}, \mathrm{t}, J 9.8,3^{\prime \prime}-\mathrm{H}$), 4.07 ($1 \mathrm{H}, \mathrm{dd}, J 12.2, J$ $\left.3.9,6^{\prime \prime} \mathrm{b}-\mathrm{H}\right), 4.25\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 11.7,7^{\prime} \mathrm{b}-\mathrm{H}\right), 4.73(1 \mathrm{H}, \mathrm{d}, J 3.9$, $\left.1^{\prime \prime}-\mathrm{H}\right), 5.94\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 2.9,2^{\prime}-\mathrm{H}\right)$ and $7.05-7.51(50 \mathrm{H}, \mathrm{m}$, 10 Ph).

Validamycin D Undecaacetate 39.-Compound 38 (131 mg , 0.091 mmol) was deprotected in the usual way to afford validamycin D (TLC, $R_{\mathrm{f}} 0.40$, propanol-acetic acid-water, 3:1:1, v / v), and isolated as the totally O -acetylated derivative $39(43 \mathrm{mg}, 49 \%$) as a syrup (Found: C, $52.05 ; \mathrm{H}, 5.8 ; \mathrm{N}, 1.4$. $\mathrm{C}_{42} \mathrm{H}_{57} \mathrm{NO}_{24}{ }^{-0.5 \mathrm{H}_{2} \mathrm{O} \text { requires } \mathrm{C}, 52.1 ; \mathrm{H}, 6.0 ; \mathrm{N}, 1.45 \% \text {); } ; \text {, }{ }^{2} .}$ $[\alpha]_{\mathrm{D}}^{25}+145.5$ (c 1.76 in CHCl_{3}); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) (inter alia) $1.63\left(1 \mathrm{H}, \mathrm{td}^{*}, J 14.7, J 12.5, J 2.5,6 \mathrm{ax}-\mathrm{H}\right), 1.79$ ($1 \mathrm{H}, \mathrm{dt}, J 14.7, J 3.4,6 \mathrm{eq}-\mathrm{H}), 2.02,2.046,2.05,2.06,2.069,2.073$, 2.079, 2.087 and $2.091\left(33 \mathrm{H}, 9 \mathrm{~s}, 11 \mathrm{COCH}_{3}\right), 2.31-2.42(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}$), 3.24 ($1 \mathrm{H}, \mathrm{dd}, J 9.8, J 3.9,7 \mathrm{a}-\mathrm{H}$), $3.40\left(1 \mathrm{H}, \mathrm{br} \mathrm{q}^{*}, J 3.9\right.$, $J 3.4, J 2.0,1-\mathrm{H}), 3.59\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 4.4,1^{\prime}-\mathrm{H}\right), 3.73(1 \mathrm{H}, \mathrm{dd}, J$ $9.8, J 3.9,7 \mathrm{~b}-\mathrm{H}), 3.98-4.06\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}\right), 4.30(1 \mathrm{H}, \mathrm{dd}, J 12.7$, $\left.J 3.9,6^{\prime \prime} \mathrm{b}-\mathrm{H}\right), 4.40\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.7,7^{\prime} \mathrm{a}-\mathrm{H}\right), 4.66(1 \mathrm{H}$, br d, J $\left.12.7,7^{\prime} \mathrm{b}-\mathrm{H}\right), 4.86$ ($\left.1 \mathrm{H}, \mathrm{dd}, J 10.3, J 3.8,2^{\prime \prime}-\mathrm{H}\right), 4.96(1 \mathrm{H}, \mathrm{dd}$, $J 10.3, J 3.9,2-\mathrm{H}), 5.00\left(1 \mathrm{H}, \mathrm{d}, J 3.4,1^{\prime \prime}-\mathrm{H}\right), 5.05(1 \mathrm{H}, \mathrm{t}, J 9.8$, $4-\mathrm{H}), 5.07\left(1 \mathrm{H}, \mathrm{t}, J 9.8,4^{\prime \prime}-\mathrm{H}\right), 5.41\left(1 \mathrm{H}, \mathrm{t}^{*}, J 10.3, J 9.2,3^{\prime \prime}-\mathrm{H}\right)$, $5.43\left(1 \mathrm{H}, \mathrm{t}^{*}, J 10.3, J 9.8,3-\mathrm{H}\right), 5.49\left(1 \mathrm{H}\right.$, br d, $\left.J 5.9,4^{\prime}-\mathrm{H}\right)$ and $5.99\left(1 \mathrm{H}\right.$, br d, $\left.J 4.4,2^{\prime}-\mathrm{H}\right)$.

Compound 39 was convertible into validamycin D 2 as described in the preparation of 1.

Acknowledgements

We express our sincere thanks to Mr. Hisao Arita and Mr. Eisaku Hata for their elemental analyses, and to Dr. Noritaka Chida for measurement of the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra.

References

1 Part 13, Y. Miyamoto and S. Ogawa, J. Chem. Soc., Perkin Trans. 1, 1989, 1013.
2 (a) T. Iwasa, E. Higashide, H. Yamamoto and M. Shibata, J. Antibiot., 1971, 24, 107; (b) S. Horii, Y. Kameda and K. Kawahara, J. Antibiot., 1972, 25, 48.
3 (a) T. Iwasa, Y. Kameda, M. Asai, S. Horii and K. Mizuno, J. Antibiot., 1971, 24, 119; (b) Y. Kameda, N. Asano, T. Yamaguchi, K. Matsui, S. Horii and H. Fukase, J. Antibiot., 1986, 39, 119; (c) N. Asano, Y. Kameda, K. Matsui, S. Horii and H. Fukase, J. Antibiot., 1990, 43, 1039.
4 S. Horii, T. Iwasa and Y. Kameda, J. Antibiot., 1971, 24, 57.
5 S. Ogawa and Y. Miyamoto, Chem. Lett., 1988, 889.
6 (a) G. Zémplen, Z. Csuros and S. J. Angyal, Ber., 1937, 70, 228; (b) S. A. Holick, S.-H. L. Chiu and L. Anderson, Carbohydr. Res., 1976, 50, 215.
7 T. Ogawa, K. Beppu and S. Nakabayashi, Carbohydr. Res., 1981, 93, C6.
8 J. Vernon, S. Roseman and Y. C. Lee, Carbohydr. Res., 1980, 82, 56.
9 Y. Kameda, N. Asano, K. Matsui, S. Horii and H. Fukase, J. Antibiot., 1988, 41, 1488.

Paper 1/01273H
Received 18th March 1991
Accepted 23rd April 1991

[^0]: * Apparent splitting pattern.

[^1]: * See footnote on p. 2124.

[^2]: * See footnote on p. 2124.

